Introduction to simmer
Bart Smeets, Iñaki Ucar
2024-09-28
Source:vignettes/simmer-01-introduction.Rmd
simmer-01-introduction.Rmd
Basic usage
First, load the package and instantiate a new simulation environment.
library(simmer)
set.seed(42)
env <- simmer("SuperDuperSim")
env
#> simmer environment: SuperDuperSim | now: 0 | next:
#> { Monitor: in memory }
Set-up a simple trajectory. Let’s say we want to simulate an ambulatory consultation where a patient is first seen by a nurse for an intake, next by a doctor for the consultation and finally by administrative staff to schedule a follow-up appointment.
patient <- trajectory("patients' path") %>%
## add an intake activity
seize("nurse", 1) %>%
timeout(function() rnorm(1, 15)) %>%
release("nurse", 1) %>%
## add a consultation activity
seize("doctor", 1) %>%
timeout(function() rnorm(1, 20)) %>%
release("doctor", 1) %>%
## add a planning activity
seize("administration", 1) %>%
timeout(function() rnorm(1, 5)) %>%
release("administration", 1)
In this case, the argument of the timeout
activity is a
function, which is evaluated dynamically to produce a stochastic waiting
time, but it could be a constant too. Apart from that, this function may
be as complex as you need and may do whatever you want: interact with
entities in your simulation model, get resources’ status, make decisions
according to the latter…
Once the trajectory is known, you may attach arrivals to it and
define the resources needed. In the example below, three types of
resources are added: the nurse and administration
resources, each one with a capacity of 1, and the doctor
resource, with a capacity of 2. The last method adds a generator of
arrivals (patients) following the trajectory patient
. The
time between patients is about 10 minutes (a Gaussian of
mean=10
and sd=2
). (Note: returning a negative
interarrival time at some point would stop the generator).
env %>%
add_resource("nurse", 1) %>%
add_resource("doctor", 2) %>%
add_resource("administration", 1) %>%
add_generator("patient", patient, function() rnorm(1, 10, 2))
#> simmer environment: SuperDuperSim | now: 0 | next: 0
#> { Monitor: in memory }
#> { Resource: nurse | monitored: TRUE | server status: 0(1) | queue status: 0(Inf) }
#> { Resource: doctor | monitored: TRUE | server status: 0(2) | queue status: 0(Inf) }
#> { Resource: administration | monitored: TRUE | server status: 0(1) | queue status: 0(Inf) }
#> { Source: patient | monitored: 1 | n_generated: 0 }
The simulation is now ready for a test run; just let it
simmer for a bit. Below, we specify that we want to limit the
runtime to 80 time units using the until
argument. After
that, we verify the current simulation time (now
) and when
will be the next 3 events (peek
).
It is possible to run the simulation step by step, and such a method is chainable too.
env %>%
stepn() %>% # 1 step
print() %>%
stepn(3) # 3 steps
#> simmer environment: SuperDuperSim | now: 80.6953988949657 | next: 80.6953988949657
#> { Monitor: in memory }
#> { Resource: nurse | monitored: TRUE | server status: 1(1) | queue status: 1(Inf) }
#> { Resource: doctor | monitored: TRUE | server status: 1(2) | queue status: 0(Inf) }
#> { Resource: administration | monitored: TRUE | server status: 0(1) | queue status: 0(Inf) }
#> { Source: patient | monitored: 1 | n_generated: 7 }
#> simmer environment: SuperDuperSim | now: 81.6210531397386 | next: 81.6210531397386
#> { Monitor: in memory }
#> { Resource: nurse | monitored: TRUE | server status: 1(1) | queue status: 2(Inf) }
#> { Resource: doctor | monitored: TRUE | server status: 1(2) | queue status: 0(Inf) }
#> { Resource: administration | monitored: TRUE | server status: 0(1) | queue status: 0(Inf) }
#> { Source: patient | monitored: 1 | n_generated: 7 }
env %>% peek(Inf, verbose=TRUE)
#> time process
#> 1 81.62105 patient
#> 2 86.74154 patient4
#> 3 89.36934 patient3
Also, it is possible to resume the automatic execution simply by specifying a longer runtime. Below, we continue the execution until 120 time units.
You can also reset the simulation, flush all results, resources and generators, and restart from the beginning.
Replication
It is very easy to replicate a simulation multiple times using standard R functions.
envs <- lapply(1:100, function(i) {
simmer("SuperDuperSim") %>%
add_resource("nurse", 1) %>%
add_resource("doctor", 2) %>%
add_resource("administration", 1) %>%
add_generator("patient", patient, function() rnorm(1, 10, 2)) %>%
run(80)
})
The advantage of the latter approach is that, if the individual
replicas are heavy, it is straightforward to parallelise their execution
(for instance, in the next example we use the function
mclapply
from the parallel)
package. However, the external pointers to the C++ simmer core are no
longer valid when the parallelised execution ends. Thus, it is necessary
to extract the results for each thread at the end of the execution. This
can be done with the helper function wrap
as follows.
library(parallel)
envs <- mclapply(1:100, function(i) {
simmer("SuperDuperSim") %>%
add_resource("nurse", 1) %>%
add_resource("doctor", 2) %>%
add_resource("administration", 1) %>%
add_generator("patient", patient, function() rnorm(1, 10, 2)) %>%
run(80) %>%
wrap()
})
This helper function brings the simulation data back to R and makes
it accessible through the same methods that would ordinarily be used for
a simmer
environment.
envs[[1]] %>% get_n_generated("patient")
#> [1] 8
envs[[1]] %>% get_queue_count("doctor")
#> [1] 0
envs[[1]] %>% get_queue_size("doctor")
#> [1] Inf
envs %>%
get_mon_resources() %>%
head()
#> resource time server queue capacity queue_size system limit replication
#> 1 nurse 9.584649 1 0 1 Inf 1 Inf 1
#> 2 nurse 21.456291 1 1 1 Inf 2 Inf 1
#> 3 nurse 25.608300 1 0 1 Inf 1 Inf 1
#> 4 doctor 25.608300 1 0 2 Inf 1 Inf 1
#> 5 nurse 31.368188 1 1 1 Inf 2 Inf 1
#> 6 nurse 40.273794 1 0 1 Inf 1 Inf 1
envs %>%
get_mon_arrivals() %>%
head()
#> name start_time end_time activity_time finished replication
#> 1 patient0 9.584649 48.87690 39.29225 TRUE 1
#> 2 patient1 21.456291 62.39177 36.78347 TRUE 1
#> 3 patient0 6.582937 45.98016 39.39722 TRUE 2
#> 4 patient1 18.105428 59.39427 40.01821 TRUE 2
#> 5 patient2 24.048864 75.18522 39.97037 TRUE 2
#> 6 patient0 10.242791 48.46888 38.22609 TRUE 3
Unfortunately, as the C++ simulation cores are destroyed, the downside of this kind of parallelization is that one cannot resume execution of the replicas.